Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering.
نویسندگان
چکیده
A technique for producing controlled interconnected porous structures for application as a tissue engineering scaffold is presented in this article. The technique is based on the fabrication of a template of interconnected poly(ethyl methacrylate) (PEMA) microspheres, the introduction of a biodegradable polymer, poly-epsilon-caprolactone (PCL), and the elimination of the template by a selective solvent. A series of PCL scaffolds with a porosity of 70% and pore sizes up to 200 microm were produced and characterized (both thermally and mechanically). Human chondrocytes were cultured in monolayer on bulk PCL disks or seeded into porous PCL scaffolds. Cell adhesion, viability, proliferation, and proteoglycan (PG) synthesis were tested and compared with monolayer cultures on tissue-treated polystyrene or pellet cultures as reference controls. Cells cultured on PCL disks showed an adhesion similar to that of the polystyrene control (which allowed high levels of proliferation). Stained scaffold sections showed round-shaped chondrocyte aggregates embedded into porous PCL. PG production was similar to that of the pellet cultures and higher than that obtained with monolayer postconfluence cultures. This shows that the cells are capable of attaching themselves to PCL. Furthermore, in porous PCL, cells maintain the same phenotype as the chondrocytes within the native cartilage. These results suggest that PCL scaffolds may be a suitable candidate for chondrocyte culture.
منابع مشابه
Biodegradable polymer scaffolds with well-defined interconnected spherical pore network.
Scaffolding plays pivotal role in tissue engineering. In this work, a novel processing technique has been developed to create three-dimensional biodegradable polymer scaffolds with well-controlled interconnected spherical pores. Paraffin spheres were fabricated with a dispersion method, and were bonded together through a heat treatment to form a three-dimensional assembly in a mold. Biodegradab...
متن کاملBiodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.
Tissue engineering scaffolds are highly engineered structures that accommodate cells, facilitate their expression, and resorb to facilitate regeneration of tissue. A new technique for producing controlled pore shape and pore size interconnectivity offers promise for application as a tissue engineering scaffold. Salt particles were spheroidized in a flame and sintered to provide an interconnecti...
متن کاملThe Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering
Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...
متن کاملPreparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering
Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using ...
متن کاملA Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications.
In tissue engineering, there is limited availability of a simple, fast and solvent-free process for fabricating micro-porous thin membrane scaffolds. This paper presents the first report of a novel surface suspension melt technique to fabricate a micro-porous thin membrane scaffolds without using any organic solvent. Briefly, a layer of polycaprolactone (PCL) particles is directly spread on top...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 85 1 شماره
صفحات -
تاریخ انتشار 2008